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Belemnites are extinct cephalopods whose evolutionary history is representative of successful adaptive radia-
tions during the Mesozoic. Nevertheless, a detailed understanding of the dynamics and palaeoenvironmental
drivers of this evolution is still lacking. In order to fill this gap, we analyze the diversity and morphological
disparity of Jurassic rostra from South Germany, and compare these patterns with other Euro-Boreal trends.
We show that, after an early apparition of few dissimilar groups during the Hettangian–Sinemurian interval,
belemnites experienced four periods of diversification (i.e., Early Pliensbachian, Middle–Late Toarcian, Early
Bajocian, andOxfordian)markedbymorphological disparifications of rostra towards formspotentially optimized
for different hydrodynamic properties. These adaptive radiations were interrupted at regional scale by four
biological crises corresponding to morphological bottlenecks (i.e., Pliensbachian–Toarcian, Aalenian, Late
Bajocian, and Kimmeridgian). Most of them were morphoselective, except the Aalenian extinction, which
could be related to a prominent sea level fall. By comparing our results to palaeoenvironmental data, we show
that warm temperate seawater temperatures might have favoured the diversification of belemnites,
potentially by accelerating their metabolic rates, the population turnovers, and the evolutionary rates on the
long term. Conversely, cooling or hyperthermal events correspondwith biological crises. Migrations towards ref-
uge areas located in the Arctic and Mediterranean domains could have been key factors for rapid post-crisis re-
coveries. Finally, the available data suggest a trend towards increased streamlining of the rostrum through the
Jurassic.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Belemnites (Belemnitida order) are extinct cephalopods easily
recognizable by the bullet shape of their calcitic rostra (Fig. 1), which
are especially abundant in marine sediments of the Jurassic and
Cretaceous. These organisms, considered as stem-group decabranchian
coleoids (Doyle et al., 1994; Fuchs et al., 2015; Klug et al., 2016) (Fig. 1),
composed a large part of theMesozoic nekton and held a key position in
the dynamics of trophic webs (i.e., as predators of small organisms and
prey for marine reptiles and chondrichthyans; Massare, 1987; Doyle
and MacDonald, 1993; Martill et al., 1994; Walker and Brett, 2002).
According to their fossil record, these coleoids inhabited surface to
deep waters of epicontinental domains, andwere present at worldwide
scale, both in the subtropical and polar areas (Stevens, 1963, 1965,
1971; Stevens and Clayton, 1971; Christensen, 1976; Doyle, 1987,
1994; Doyle et al., 1997; Christensen, 2002). In agreement with the
regional distribution and the palaeoenvironmental differences in the
taxonomic composition of most belemnite communities (Mutterlose
Dera), kenneth.debaets@fau.de
and Wiedenroth, 1998; Mariotti et al., 2012; Weis et al., 2012),
recent geochemical analyses of rostra indicate that different species
might have had different ecological preferences in terms of life depth,
seawater temperature, or salinity (Dutton et al., 2007; McArthur et al.,
2007; Dera et al., 2009; Rexford and Mutterlose, 2009; Mutterlose
et al., 2010; Wierzbowski and Rogov, 2011; Li et al., 2012; Harazim
et al., 2013; Stevens et al., 2014; Wierzbowski, 2015). Nevertheless,
some eurytopic taxa likelymigrated over several hundreds of kilometers
and different depths during their lifetime (Christensen, 1997; Zakharov
et al., 2006; Alsen and Mutterlose, 2009; Sørensen et al., 2015).
According to Doguzhaeva et al. (2013), their colonization of deeper
depths in the water column could rest on modifications of embryonic
shell structures, preventing hatchings from implosion in deeper waters.
By this extraordinary profusion in diverse ecological niches at global
scale, belemnites might therefore be excellent examples of a successful
adaptive evolutionary radiation (sensu Neige et al., 2013) during
the Mesozoic.

Over the last ten years, the taxonomical study of belemnites has
shown a significant renewal partly boosted by the palaeoclimatic and
palaeoenvironmental perspectives offered by oxygen and carbon
isotope analyses of their rostra (Jenkyns et al., 2002; Mutterlose et al.,
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Fig. 1. Reconstruction of a belemnite showing internal hard parts composing the
endocochleate skeleton: proostracum, phragmocone, orthorostrum, and epirostrum.
Modified from Spaeth (1975).
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2010; Dera et al., 2011a; Bodin et al., 2015; Ullmann et al., 2015). Nev-
ertheless, the origin, phylogeny, and macroevolutionary history of this
group remain quite obscure and poorly constrained (Doyle et al.,
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Fig. 2. Palaeogeographic and chronostratigraphic contexts used in this study. The Jurassic strati
et al., 2012), except for the Toarcian and Aalenian subdivisions, which respect the nomenclatu
website (http://cpgeosystems.com) and the NW Tethyan map corresponds to the Callovian m
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1994). Basically, recent palaeontological data suggest that: 1) the
Belemnitida order likely originated in the Asian part of the Panthalassan
domain during the Triassic (Iba et al., 2012) (Fig. 2); 2) it experienced a
rapid radiation in the neritic domains of NW Tethyan and Gondwanan
areas at the beginning of the Jurassic (Weis and Delsate, 2006;
Iba et al., 2015b); 3) it was subject to several biological turnovers
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have yet shown that belemnites were especially sensitive to
palaeoenvironmental stresses (e.g. anoxia, seawater acidification or
temperature changes) and could represent good markers of biological
crises (Harries and Little, 1999; Arkhipkin and Laptikhovsky, 2012;
Harazim et al., 2013; Pinard et al., 2014b; Ullmann et al., 2014).

Comparedwith Jurassic ammonites forwhichdiversification, extinc-
tion, or palaeobiogeographical patterns are increasingly quantified by
innovative methods (Dommergues et al., 1996; Sandoval et al., 2001;
Dommergues et al., 2002; Gerber et al., 2007; Moyne and Neige, 2007;
Neige et al., 2009; Dera et al., 2010, 2011b; Whiteside and Ward,
2011; Neige et al., 2013), a good understanding of long-term evolution-
ary trends is still lacking for belemnites. This is mainly because their
rostra are difficult to identify at the species level. Indeed, morphological
intraspecific variability, allometric growth, and dimorphism are very
common (Stevens, 1965; Doyle, 1985), and anatomical characters
useful for species identification often poorly preserved (e.g., grooves
or apex). Moreover, most old systematic studies used qualitative
descriptions of rostra and only rarely take intraspecific variation into
account, such that synonymies are common andmight distort the diver-
sity estimates. By consequence, a thorough taxonomical reappraisal of
specimens should be done using morphometric approaches in order
to validate current species and untangle the temporal diversity patterns
(compare De Baets et al., 2013). In this perspective, multivariate ordina-
tion methods describing the morphological disparity should be very
promising (Roy and Foote, 1997), because they offer a suitable way to
quantify the variability of forms without consideration of taxonomic
or phylogenetic contexts (Foote, 1997). Already successfully applied to
Jurassic ammonites (Dommergues et al., 1996; Dera et al., 2010;
Simon et al., 2010, 2011) or modern coleoids (Neige, 2003), compari-
sons of diversity and disparity curves provide a robust framework for
discussing genuine biological processes, assessing selective dynamics
during crises, and minimizing taxonomic biases (Nardin et al., 2005).

In this study, we analyze for the first time the macroevolutionary
dynamics of Jurassic belemnites by combining taxonomical and mor-
phological approaches. We compiled a representative dataset including
biostratigraphic, taxonomic, andmorphometric information concerning
118 species present in the Euro-Boreal areas of NW Tethys. Diversity,
extinction, origination, as well as morphological disparity curves are
computed at a substage resolution and compared with Jurassic data
fromothermarine domains. Here, wemainly focus on the Jurassic inter-
val because: 1) it marks the radiation of belemnites in the NW Tethyan
seas, and 2) by the abundance of recent palaeoenvironmental data
concerning this period, it offers a continuous and suitable framework
for discussing the influence of palaeoclimatic and eustatic constraints.

2. Material and methods

2.1. Data compilation

Our study is based on a panel of 118 Jurassic belemnite species (from
the Hettangian to Early Tithonian) illustrated in the monograph of
Schlegelmilch (1998). Although this compendium exclusively concerns
species known from southernGermany (i.e., SwabianAlb and Franconian
Alb, Fig. 2), it represents a synthetic work including the revisions of
Schwegler (1961, 1962a, b, 1965, 1969, 1971) and Riegraf (1980, 1981)
describing numerous Euro-Boreal taxa covering the Jurassic period
with an ammonite biozone resolution. Similar datasets compiled by
Schlegelmilch (1985, 1992, 1994) for ammonites have been successfully
used to analyze disparity and diversity dynamics of Jurassic ammonites
(Simon et al., 2010, 2011). The belemnite species presented in this
monograph are relatively common in northern European basins and, to
this date, this compilation is the only one which allows a continuous
appraisal of Euro-Boreal diversity patterns for thewhole Jurassic interval.
Obviously, we expect that these regional data might not reflect theMed-
iterranean and Arctic belemnite communities because faunal segregation
and endemism were frequent during the Jurassic (Doyle, 1994; Doyle
et al., 1997; Mariotti et al., 2012; Weis et al., 2012; Pinard et al., 2014b;
Weis et al., 2015; Weis and Thuy, 2015). Additional comparisons with
data from other basins will be necessary. Different types of information
were used to build our database. We reported the taxonomic affiliation
of each species according to the nomenclature of Schlegelmilch (1998),
its maximal biostratigraphic range at the substage resolution, as well as
morphometric data measured on the biggest, entire, figured specimen
of each species (Supplementary data).

2.2. Morphometrics

Several measurements and ratios are generally used to describe
the form of rostra and to discriminate specimens (Doyle, 1990;
Schlegelmilch, 1998). Nevertheless, most metrics are specific to genera,
so that they became not suitable to describe the overall variability of
Jurassic species. In order to include all specificities of studied specimens,
we introduce 14 morphological parameters describing the robustness
and the external shape of rostra, as well as the number, position and
relative length of grooves (Fig. 3). Thirteen of them are calculated
from linear measurements taken on ventral (outline) and lateral
(profile) views, whereas the last one is semi-quantitative.

The measured dimensions correspond to the total preserved length
of rostra (Lmax), as well as the heights and widths of apertural (H and
W), alveolar (Halv and Walv at 1/4 of Lmax), median (Hmed and Wmed

at 1/2 of Lmax), medio-apical (Hmap andWmap at 3/4 of Lmax) and apical
regions (Hap and Wap at 1/10 of Lmax). Moreover, we measured the
length of ventral (V), ventro-lateral (VL), lateral (L), dorso-lateral
(DL), and dorsal (D) grooves of rostra by assigning positive or negative
signs according to their apical and/or alveolar positions, respectively.
Grooves covering the total length of rostra or occupying central
positions were arbitrarily considered as apical. These measurements
were mainly done on orthorostra in order to exclude problems of
palaeobiological interpretation of epirostra (Doyle, 1985; Arkhipkin
et al., 2015) (Fig. 1). After verifying that this has no major influence on
disparity results, we only included Youngibelus tubularis, considered as
a sexual dimorph of Youngibelus trivialis by Doyle (1985, 2003), for
which we measured the total rostrum. Frommorphometrics, we calcu-
lated 14 morphological indices describing the form of ventral outlines
and lateral profiles, as well as the relative length of grooves (Fig. 3):

- ROB is the robustness of rostra and corresponds to the ratio between
themaximal length (Lmax) and the apertural width (W). It describes
the general shape of rostra and the values discriminate stocky (~2),
robust (~2 to ~10), or slender specimens (≥10).

- RALV, RMALV, RMAP, and RAP indicate the relative inflation of outlines in
the alveolar, medio-alveolar, medio-apical, and apical regions,
respectively. Percentage values may be negative, positive, or equal
to zero if the lateral flanks of rostra converge, diverge or remain
parallel, respectively. Altogether, these parameters give a good
estimate of conical, cylindriconical, cylindrical, or hastate shapes
and their intermediates.

- A represents the average apical angle of the outline (calculated in
degrees) and basically discriminate sharp and obtuse apici. Values
range from ~10° to ~90°. Note that mucronate apici are not
considered here.

- INFAP is the apical inflation of profiles and measures the conver-
gence of ventral and dorsal flanks in the apical region. Percentage
values are generally close to RAP when rostra are symmetrical but
differ in asymmetric subhastate forms with ventral inflations.

- GD, GDL, GL, GVL, and GV are the relative lengths of dorsal, dorso-
lateral, lateral, ventro-lateral, and ventral grooves compared
with the total length of rostra. The value of each index is null if
the groove is lacking and reaches 100% if it covers the totality of
the rostrum. Note that negative values indicate alveolar positions.

- COMP is a compression ratio and indicates the general shape of
the alveolar aperture and/or cross-sections. The calculated values
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may be inferior, equal or superior to one and refer to laterally
compressed, regular, or flattened shapes, respectively.

- ANG refers to the angularity of cross-section contours. It is
defined by discretised values ranging from 1 for smooth shapes
to 3 for angular ones, with values of 2 for intermediate sub-
angular shapes.
2.3. Diversity and morphological analyses

The diversity levels of belemnite genera and species were mea-
sured using different estimates to appraise the sampling biases in-
herent to our regional dataset. First, we calculated the total
richness as the number of species and genera for the 25 substages
of the Hettangian–Early Tithonian interval (Fig. 2). 1000 bootstraps
were performed to evaluate the range of richness levels after random
sampling (measured as percentiles). Once centered, these ranges
were used as error estimates (Hammer and Harper, 2006). In com-
plement, we analyzed themean standing diversity as the average be-
tween the number of taxa crossing the bottom and top boundary of
each interval (Foote, 2000; Caruthers et al., 2013). In order to test
the influence of temporal inconsistency, diversity data were weight-
ed by the duration of substages calculated from Gradstein et al.
(2012) (Fig. 2). However, this latter approach is not ideal as it im-
plies that time is the main control of diversity dynamics and favors
a continuous extinction model — whereas extinctions typically
occur in pulses (Foote, 2005). Finally, the relative diversity of each
belemnite family was analyzed and the extinction and origination
rates were measured using the van Valen metric (Foote, 2000;
Caruthers et al., 2013), with and without time-standardization.

Compared with diversity estimates, variance-based disparity
metrics are little affected by sample size and uneven fossil record
(Butler et al., 2012). Parallel uses of morphological disparity and
diversity curves appear therefore as a good means to better discrimi-
nate the influence of sampling or taxonomical biases. In order to an-
alyze the morphological variability of species, we applied a principal
component analysis to the data matrix including the 14 morphological
parameters measured on the 118 species. By ordination method,
we computed morphospaces (based on the four first principal compo-
nents) in which the scores of all species are plotted to show the
morphological differences between taxa. The results were divided in
25 subspaces to describe the morphological evolution of belemnite
families through the 25 substages. We used the MDA Matlab package
(Navarro, 2003) to analyze the morphospace occupation over time
with conventional estimators, such as the PCO volume, the sum of
variance, the mean pairwise distance, and the average occupation ranges
on each principal component. All disparity metrics were corrected by
using1000bootstraps and rarefactionprocedures (n=5). In complement,
we measured the partial disparity of belemnite families through
time by following the method of Foote (1993).

3. Results

3.1. Evolution of diversity patterns

Whatever the taxonomical resolution (i.e., species or genus) and
the metric used, the results show strong variations in the diversity of
belemnites from South Germany through the Jurassic (Fig. 4). By con-
sidering the total richness estimates, it appears that the diversity levels
remained low from the Hettangian to the Sinemurian and markedly
rose during the Early Pliensbachian. In details, this radiation was linked
to a massive diversification of Passaloteuthidae and the appearance of
Hastitidae (Fig. 5a). From the Late Pliensbachian to the Early Toarcian,
successive extinctions affected these two families and led to low diver-
sity levels of species before and after the Pliensbachian–Toarcian
boundary. Interestingly, this crisis might also be visible at the genus
scale but it was seemingly delayed to the Early Toarcian (Fig. 4A,C).
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This trend was reversed from the Middle to the Late Toarcian owing
to the diversification of Acrocoelitidae originated during the crisis
and the subsequent appearance of Salpingoteuthidae and
Rhabdobelidae. Whatever the taxonomical scale, the diversity levels
were maximal in this time interval but, throughout the Aalenian, an
important drop occurred in response to low origination rates and
higher extinction rates (Fig. 4A, B). This disturbance was accompa-
nied by strong faunal turnovers (especially at the genus scale,
Fig. 4D) marked by the disappearance of Rhabdobelidae and
Salpingoteuthidae on the one hand, and the diversification of
Cylindroteuthidae, Megateuthidae, and Belemnopseidae on the
other (Fig. 5a). A third diversity peak occurred in the Early Bajocian,
but the following disappearances of Megateuthidae and
Cylindroteuthidae reduced the diversity levels from the Late
Bajocian to the Late Callovian (more progressively for species than
genera). Finally, the appearance of Duvaliidae drove a last Middle
to Late Oxfordian diversity peak, which ended after their decline
during the Kimmeridgian.

If mean standing diversity estimates are considered, the diversity
fluctuations appear smoother (especially for species) and some poten-
tial crises and diversification events previously suggested disappear.
At the species resolution, the main differences concern the lack of
sharp diversity peaks during the Early Pliensbachian and the Early
Bajocian. For genera, the patterns are more conservative, except for
the Middle Jurassic during which the diversity levels gradually decline
from the Late Toarcian to the Late Bathonian, without recognition of
the Early Bajocian diversification. In comparison, the influence of
time-standardization is more consequent. This is especially obvious at
the genus resolution, as normalization tends to increase the richness
levels during the Middle Jurassic and to enhance the extinction and
origination rates during the Aalenian and Callovian. At the species
level, the consequences appear less important, but we can note a rise
of Middle Jurassic diversity estimates compared with the Early and
Late Jurassic levels.
3.2. Evolution of disparity patterns

The morphospaces, namely PC1 vs. PC2 and PC3 vs. PC4,
represent ~39% and 21% of the total variance supported by the
data matrix (Fig. 6). In the first morphospace, PC1 indicates the
general shape of belemnite rostra (i.e., conical, cylindrical, or hastate),
whereas PC2 basically represents their robustness from slender to
stocky rostra. The groove patterns are visualized along a diagonal
gradient, in which the middle marks missing or small grooves, and
the opposite corners indicate the presence of long grooves in apical
(top left) or alveolar/lateral (bottom right) positions. The second
graph mainly summarizes the angularity of flanks along PC3 and
separate compressed, regular, and flattened rostra along PC4. The
sharpening of apici is discriminated along a diagonal line ranging
from smoother ones in the top right corner to sharper ones in the
bottom left corner.

Fig. 7 summarizes the distribution of belemnite families and
genera in the morphospace PC1 vs. PC2 through the 25 substages.
In complement, we analyzed the temporal variations in morpholog-
ical disparity (Fig. 8), the evolution of rostral forms (Fig. 9), and the
relative contribution of belemnite groups to the overall morpholog-
ical variability (Fig. 5b). Basically, all disparity estimates show
the same trends, with both gradual increases from the Hettangian
to the Early Pliensbachian and from the Late Callovian to the Early
Kimmeridgian, and one sudden rise in the Late Toarcian (Fig. 8).
Some peaks are linked to the co-occurrence of families with distinctmor-
phologies (e.g., Acrocoelitidae, Salpingoteuthidae, and Rhabdobelidae
during the Late Toarcian), whereas others reflect the predominance
of one group with an important variability (e.g., Belemnopseidae
during the Oxfordian and Kimmeridgian) (Figs. 5b and 7). In contrast,
morphological bottlenecks occurred from the Early Pliensbachian to
the Middle Toarcian, from the Late Toarcian to the Late Aalenian, at the
Bajocian–Bathonian boundary, and during the Late Kimmeridgian–
Tithonian interval.
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3.3. Evolution of rostral forms

By analyzing the morphospace occupation patterns (Fig. 9), we
demonstrate that the form of belemnite rostra markedly changed
during the Jurassic:

PC1 The belemnites produced awide range of rostrum forms through
the Early Jurassic (i.e., conical, hastate, and cylindriconical),
but they progressively became more hastate from the Middle to
the Late Jurassic.

PC2 On average, the Jurassic belemnites were robust but slender
forms appeared through the Pliensbachian–Toarcian and
Oxfordian–Kimmeridgian intervals. Stocky shapes also prevailed
during the Oxfordian.

PC3 While the Early Jurassic rostra had smoother apici and angular
flanks, they progressively evolved towards streamlined shapes
with sharp apici and smooth flanks during the Middle and
Late Jurassic.

PC4 The belemnite rostra gradually became more flattened through
the Jurassic, except during the Oxfordian–Kimmeridgian interval
when compressed rostra with smooth apici reappeared.

4. Belemnite diversity patterns from South Germany

Riegraf (1981) as well as Doyle and Bennett (1995) already
showed that the number of belemnite species in South Germany varied
markedly through the successive stages of the Jurassic. Here, our reap-
praisal at the substage resolution specifies the results. As explained by
Simon et al. (2010, 2011), this temporal scale is a good compromise
for depicting regional diversity/disparity patterns without major biases
resulting from coarser or finer resolutions, such as excessive smoothing
or background noise. When total richness levels are considered
(Fig. 4A,C), four main diversity peaks are highlighted during the
Early Pliensbachian, Late Toarcian, Early Bajocian, and Oxfordian, both
at species and genus scales. Conversely, the Late Pliensbachian–Early
Toarcian interval, Aalenian, Late Bajocian, and Kimmeridgian corre-
spond to strong incisions of diversity levels, spanning either one or
more substages. Importantly, the mean turnover of genera occurred at
the Aalenian–Bajocian boundary (Fig. 4D).

It is evident that the regional fossil record from South Germany does
not exactly represent the diversity patterns of belemnites prevailing at
the Euro-Boreal scale. Beyond genuine evolutionary processes, it is pos-
sible that preservation biases, stratigraphic heterogeneities in sampling
effort, and common causes (e.g., sea-level) driving both rock and fossil
records have partly altered the expression of richness levels at local
scale (Dunhill et al., 2012;Holland and Patzkowsky, 2015). For example,
recent analyses of worldwide Jurassic benthic communities show that
the Aalenian could be broadly undersampled compared with other
stages (Kiessling et al., 2007), meaning that the depicted belemnite cri-
sis would be artificially exaggerated. In addition, the choice of diversity
metrics is of prime importance because methodological artefacts can
affect the temporal trends (Foote, 2000). Appraising the potential biases
is thus of prime importance before discussing any trend.

4.1. Quality of the belemnite fossil record

We assume that the sampling effort and the taxonomical biases
(i.e., synonymy) should not heavily affect the long-term diversity
patterns of belemnites, because the monograph of Schlegelmilch



PC1 (23% of variance)

P
C

2 
(1

5.
9%

 o
f v

ar
ia

nc
e)

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

PC1 (23% of variance)

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

Salpingoteuthis
trisulcata

Salpingoteuthis
tessoniana

Youngibelus
tubularis

Subulibelus
problematicus

Suebibelus
pressulus

Hastites
clavatus

Hastites
compressoides

Produvalia
voironensis

Pleurobelus
subirregularis

Hibolithes
wuerttembergicus

Dactyloteuthis
irregularis

Acrocoelites
trisulculosus

Eocylindroteuthis
brevispinata

Coeloteuthis
excavata

Nannobelus
acutus

Acrocoelites
brevisulcatus

GDGDL

GV

GVL

ANG

COMP

RALV

RMALV

RMAP

INFAP

ROBRAP

A

GL

Conical Cylindrical Hastate

Slender

Stocky

Apical grooves

(V, DV, DL, D)

Alveolar + lateral

grooves
m

issing or sm
all

grooves

Robust

PC3 (11.2% of variance)

P
C

4 
(1

0.
3%

 o
f v

ar
ia

nc
e)

6

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

PC3 (11.2% of variance)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

6-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

GD

GDL
GV

GVL

ANG

COMP

RALV

RMALV

RMAP

INFAP

ROB

RAP
AGL

Hibolithes
planoclava

Salpingoteuthis
tessoniana

Subulibelus
problematicus

Rhabdobelus
serpulatus

Produvalia
blumbergensis Pleurobelus

subirregularis

Coeloteuthis
calcar

Hibolites
semihastatus

rotundus

Belemnopsis
depressa

Parapassaloteuthis
zieteni

C
o

m
p

re
ss

ed
se

ct
io

n
F

la
tt

en
ed

 s
ec

ti
o

n
(+

 v
en

tr
al

 g
ro

o
ve

s)
Shar

p ap
ex

Sm
ooth

 a
pex

Acrocoelites
subgracilis

Angular flanksSmooth flanks

Belemnopsis
verciacensis

Brevibulis gingensis

Fig. 6. Morphospaces of Jurassic belemnite rostra built on the first principal components (i.e., PC1 vs. PC2 and PC3 vs. PC4) resulting from PCA. On the left, the morphospaces show
the distribution of all species (blue dots) and representative forms of selected species (red dots) are drawn according to ventral (left), lateral (right), and apical views showing the position
and the relative length of grooves. On the right, the morphological parameters structuring the distribution of species are plotted in the morphospaces. The correlation of parameters
and the distribution of shapes indicate general morphological trends in the morphospace occupation (in green arrows).

86 G. Dera et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 457 (2016) 80–97
(1998) synthesizes over forty years of fossil collecting in several re-
gional outcrops and includes the major revisions of Schwegler
(1961, 1962a,b, 1965, 1969, 1971) and Riegraf (1980, 1981). In
South Germany, the stratigraphic record of marine Jurassic deposits
does not present major hiatus at regional scale (Bayer and McGhee,
1986; DSK, 2002). However, the influence of temporal changes in
lithology and palaeoenvironments cannot be neglected, because
shifts from carbonate to siliciclastic rocks and/or proximal to distal
marine contexts, may greatly impact the diversity patterns through
preservation biases and palaeoecological partitioning of faunas
(Peters, 2008; Holland and Patzkowsky, 2015). As belemnites are
often considered inhabiting deeper, hemipelagic environments
(Mutterlose et al., 2010), it would be expected that higher diversity
levels correspond to deep shaly facies, which favour preservation
in return. However, this model is not fully coherent with data from
South Germany and surrounding areas (e.g., Luxembourg and
the UK) because belemnite rostra are commonly found in lagoonal
carbonate facies of the Late Jurassic and conglomeratic and sandy
littoral facies of the Aalenian (Weis and Mariotti, 2007; Stevens
et al., 2014). The reason for this occurrence in shallow seas is that
numerous belemnite species could have lived the major part of
their life in deeper waters, but reached shallow ecosystems for
reproducing then dying (Mutterlose et al., 2010). At least in some
cases, there is indication that they might have even spent their entire
life in these environments (e.g., inner shelf palaeoenvironments of the
Nüsplingen Limestone; Stevens et al., 2014). In complement of the
robust calcitic structure of rostra favouring their preservation (Saelen,
1989; Ullmann et al., 2015), this ability to occupy a wide range of
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environments (and facies) is quite positive if we expect to have a
continuous fossil record whatever the lithology. However, this calls
for careful interpretation of diversity results because the variability
of ecological tolerances and behaviours of belemnite taxa could
distort the faunal composition and richness levels through time at
regional scale (Mutterlose and Wiedenroth, 1998). Despite these
considerations, we consider that the belemnite fossil record from
South Germany might be the most suitable for appraising general
biodiversity patterns because similar analyses of regional ammonite
faunas with similar collection efforts match broader diversity varia-
tions depicted at Euro-Boreal scale (Moyne and Neige, 2007; Simon
et al., 2010, 2011).
4.2. Reliability of diversity metrics

Whatever the taxonomical resolution, standardizing the richness
levels by interval durations amplifies the Middle Jurassic diversity
estimates on the one hand, and minimizes the diversity peaks of the
Early and Late Jurassic on the other. Nevertheless, this normalization
precludes direct comparisons of peakmagnitudes through timebecause
the temporal calibration of the Jurassic is still not fully reliable
(Gradstein et al., 2012). Uncertainties on radio-isotopic dates and
interpolated numerical ages of stage boundaries range from ±1
to ±1.4 Myr for the Middle Jurassic, against ±0.2 to ±1 Myr
for the Early and Late Jurassic. This range of uncertainty is very
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problematic when considering the average durations of studied sub-
stages, which are in the same order of magnitude (Gradstein et al.,
2012). Recent cyclostratigraphic works even suggest that the Middle
Jurassic could be longer of 2 to 3 Myr than currently accepted
(Suchéras-Marx et al., 2013; Martinez and Dera, 2015), with the con-
sequence of exaggerating the standardized diversity estimates. In
addition, time-normalization can introduce a negative correlation
between calculated rates and interval durations (Foote, 1994), and
it assumes that the magnitude of extinction and origination rates is
time dependent, which is not necessarily true (Raup and Sepkoski,
1984; Foote, 2005). For these reasons, we prefer to avoid any
interpretation of time-standardized metrics.

Compatible with the short longevity of most belemnite species
(i.e., 0.5 to 2 ammonite chrons) (Doyle and Bennett, 1995), the discrep-
ancies between the total richness estimates and the mean standing
diversity curves highlight a possible influence of singletons (i.e., taxa
confined to a single interval) on the raw temporal trends. The conse-
quences are major because this suggests that the Early Pliensbachian
and Early Bajocian diversity peaks could include regional artefacts
depending either on the occurrence of short-lived endemic taxa, tempo-
ral migrations, or regional appearance/disappearances of species. In a
similar way, the magnitude of Pliensbachian–Toarcian and Aalenian
depletions in the total richness could be exaggerated. From available
regional data, it is therefore difficult to conclude whether the depicted
rises and falls in diversity reflect genuine macroevolutionary processes
prevailing at the entire Euro-Boreal scale, or regional diversity patterns
influenced by regional constraints. Appraising the macroevolutionary
dynamics of Euro-Boreal belemnites requires both complete revisions
and analyses of palaeontological data from several European basins,
but this is beyond the scope of this study. Nevertheless, it is worth
mentioning that recent compilations of all European belemnite faunas
and their analysis at the biozone scale display very similar results for
the Hettangian–Aalenian interval (Pinard et al., 2014a). Moreover,
sub-polar data from Siberia support our regional results (Meledina
et al., 2005), except for the Middle and Late Jurassic when a strong
faunal provincialism obscured the supra-regional trends (Sachs and
Nalnyaeva, 1975; Dzyuba, 2013) (Fig. 10). In consequence, we suggest
that the main diversity peaks and biotic crises recorded in South
Germany can at least be regarded as robust Euro-Boreal events, except
the Early Pliensbachian and Early Bajocian diversifications, which
remain to be confirmed at broader spatial scale.

5. Spatio-temporal dynamics of diversity

5.1. Early Jurassic events

After a 10-Myr-long stagnation of diversity levels after their arrival
in NW Tethys, the belemnites experienced their first diversification
during the Early Pliensbachian. In several localities from western and
central Europe, this radiation marked a rapid change in faunal commu-
nitiesmarked by replacements of small Hettangian and Sinemurian taxa
(e.g., Schwegleria, Nannobelus, and Coeloteuthis) by numerous bigger
species belonging to the genera Passaloteuthis, Hastites, or Gastrobelus
(Doyle, 1987, 1994; Riegraf, 2000; Weis and Thuy, 2015). However it
is currently difficult to assess if this corresponds to a global event
because, with the exception of Japan and Tibet (Iba et al., 2015a, b),
Pre-Toarcian belemnites have not yet been found in other domains
such as the Arctic seas (i.e., Siberia) or eastern and southern Panthalassa
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(i.e., South America, NW Zealand) (Stevens, 1965; Doyle, 1994; Doyle
et al., 1997). Moreover, Iba et al. (2014) recently showed that the
Sinemurian belemnites from Japan completely differed from European
families, attesting an obvious provincialism between the Tethyan
and Panthalassan areas. As a consequence, the first major radiation of
Jurassic belemnites may be considered as a regional or NW Tethyan
event, which affected homogeneous faunas across the European basins
(Doyle, 1994; Weis and Thuy, 2015).

Evidences for a worldwide drop of belemnite diversity levels during
the Late Pliensbachian are currently lacking and call for further investi-
gation, especially if genera are not affected (Fig. 4C). Nevertheless, this
regional decline is compatible with the precursor events of the multi-
phased Pliensbachian–Toarcian crisis having affected various organisms
at global scale (Dera et al., 2010; Caruthers et al., 2013), namely the
“valdani” and “gibbosus” extinction events. Comparatively, data from
southern France and Great Britain indicate that the subsequent Early
Toarcian extinction event and the Late Toarcian recovery of belemnites
weremore widespread features in the Euro-Boreal basins (Doyle, 1990;
Harries and Little, 1999; Pinard et al., 2014a, b). In the Mediterranean
domains, the Toarcian species became rare and most groups did not
reappear before the Middle Aalenian (Sanders et al., 2015; Weis et al.,
2015). As for other marine organisms (Hallam, 1987; Little and
Benton, 1995; Caswell et al., 2009; Dera et al., 2010; Caruthers et al.,
2013), this might suggest that the Pliensbachian–Toarcian crisis of
belemnites recorded in South Germany could have been worldwide in
extent, and paced by successive extinction pulses.

Compared with NW Tethyan ammonites, which achieved their
rediversification during the Middle Toarcian (Dera et al., 2010), the
main recovery phase of belemnites was delayed to the Late Toarcian
in the southern German basins. Nevertheless, data from Siberia and
Great Britain show that the diversification was faster (i.e., Middle
Toarcian) and twice more prolific towards high latitudes (Sachs and
Nalnyaeva, 1975; Doyle, 1990, 1992; Meledina et al., 2005) (Fig. 10).
Atypically, this would suppose an inverted latitudinal diversity gradient
opposed to the classical conception of subtropical “hotspots” observed
for modern coleoids (Rosa et al., 2008) or Toarcian ammonites
(Macchioni and Cecca, 2002; Dera et al., 2010, 2011b). However, it is
possible that the spatial distribution of belemnites wasmore influenced
by salinity and oxygenation constraints than temperature (Doyle, 1987;
Harazim et al., 2013; Ullmann et al., 2014).

To date, the origin of this Arctic faunal burst remains speculative. By
accepting that the Siberian taxa defined by Sachs and Nalnyaeva (1975)
are all valid, Doyle (1987) proposed that this flourishing Arctic diversity
could result from northward migrations of NW Tethyan groups, which
regionally survived during the Early Toarcian crisis (e.g., Passaloteuthis,
Nannobelus, Acrocoelites, Clastoteuthis, and Holcobelus), and their rapid
evolution into new endemic genera (e.g., Lenobelus, Pseudodicoelites,
and Rarobelus) (Sachs and Nalnyaeva, 1975; Meledina et al., 2005;
Dzyuba et al., 2015). This diversification could have been facilitated by
the environmental partitioning of Siberian domains (Zakharov et al.,
2003), as well as new ecological opportunities in these boreal “refuge”
areasmarked bymore clement conditions in terms of seawater temper-
ature, oxygenation, food availability, competition, and predation.

5.2. Middle and Late Jurassic events

As previously shown by Doyle and Bennett (1995), the most impor-
tant disruption in the evolutionary dynamics of belemnites occurred
throughout the Aalenian. It ended at the Aalenian–Bajocian boundary
with a profound turnover of Jurassic families, likely accounting for the
initiation of a profound provincialism between the NW Tethyan and
Arctic belemnite faunas (Doyle, 1987). In the Swabo-Franconian basins,
this biotic crisis started with a sudden interruption of origination
processes and massive extinctions of Toarcian Acrocoelitidae,
Salpingoteuthidae, and Rhabdobelidae at the Toarcian–Aalenian bound-
ary (Figs. 4 and 5). Although delayed by one substage (i.e., Middle
Aalenian), a strong incision of diversity levels also occurred in the
Siberian basins (Sachs and Nalnyaeva, 1975; Meledina et al., 2005)
(Fig. 10), which would indicate profound disturbances in the belemnite
communities at the North hemisphere scale. This biotic crisis is compat-
ible with the low diversity levels of European ammonites at the
Toarcian–Aalenian boundary and their high turnover rates at the
Aalenian–Bajocian transition (Sandoval et al., 2001; Moyne and Neige,
2007). Nevertheless, the status of this Aalenian crisis is still a matter of
debate because analyses of Jurassic benthic faunas performed at stage
resolution show that numerous groups survived without apparent
changes in the structure of communities (Kiessling et al., 2007). This
discordance between the evolutionary dynamics of benthic and pelagic
organisms could be a key for understanding the Aalenian crisis but,
prior to any conclusion, benthic diversity patterns should be reappraised
at a substage resolution. Indeed, analysis of ammonite faunas shows that
the Aalenian diversity drop is completely smoothed when stage-scale
diversity patterns are considered (Yacobucci, 2005).

Contrary to the Arctic diversity levels, which declined until
the Bathonian, a prolific and rapid recovery happened in South
Germany during the Early Bajocian, before declining again from the
Late Bajocian to the Callovian (as in Caucasus; Ruban, 2007).
Interestingly, this ephemeral rediversification seems to have been
partly boosted by the return and the evolution of Belemnopseidae
having previously deserted the NW Tethyan basins for refuge areas
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during the Toarcian (Weis et al., 2015). To our knowledge, this Early
Bajocian diversity peak of belemnites has not been described
elsewhere, but it was synchronous to a major diversification of
NW Tethyan ammonites, radiolarians, and coccolithophorids (see
Suchéras-Marx et al., 2015; and references herein). As it also corre-
sponds to profound palaeoenvironmental changes characterized by
the recovery of reefal ecosystems and carbonate production in the
Euro-Boreal seas (Leinfelder et al., 2002; Lathuilière and Marchal,
2009; Brigaud et al., 2014), we consider this peak as a regional
event interrupting a monotonous Middle Jurassic diversity. The
short duration of this diversification episode (Early–Middle Bajocian)
and the following extinction remain intriguing. O'Dogherty et al.
(2006) linked a similar crisis recorded in the ammonite communities
(i.e., namely the niortense event; Moyne and Neige, 2007) to a general
fall of NW Tethyan productivity levels manifested by δ13C decreases.
It is possible that belemnites were similarly affected.

Compared with the homogenous trends depicted during the
Early Jurassic and the Aalenian, the palaeontological data from Russia
show that the macroevolutionary dynamics of Euro-Boreal and Arctic
belemnites was more heterogeneous, even opposite, from the Bajocian
to the Tithonian (Fig. 10). Whereas data from South Germany indicate
an Oxfordian diversification followed by a progressive collapse during
theKimmeridgian, those fromSiberia display a net diversity fall through
the Oxfordian (Zakharov et al., 2014), followed by regional rises in the
number of species from the Kimmeridgian to the Early Tithonian
(Dzyuba, 2013). These opposite patterns of biodiversity are here
highlighted for the first time, and it is likely that they reflect diversity
dynamics of two independent evolutionary histories constrained by dif-
ferent palaeoecological constraints. In agreement, Doyle (1987) noted
that a strong provincialism prevailed between the Euro-Boreal and Arc-
tic belemnite communities from theMiddle to the Late Jurassic. The or-
igin of these faunal segregations and decoupled evolutionary histories
remains obscure, but it could be anchored in the aftermath of the
supra-regional Aalenian crisis, because temporal obstructions of the
marine pathway connecting the two domains (i.e., Viking Corridor)
are known to have strongly decreased the faunal exchanges at this
time (Nikitenko et al., 2006; Korte et al., 2015).

6. Morphological evolution of belemnite rostra

The morphospace occupation patterns show that the belemnite ros-
tra had a great variability of forms (Fig. 6), which markedly varied
through time (Figs. 7 and 8). On average, the Jurassic rostrawere robust,
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cylindrical to cylindriconical, and had small grooves, but many groups
without apparent phylogenetic links (Schlegelmilch, 1998) successively
experienced evolution towards hastate, conical, slender or stocky
shapes (Figs. 7 and 9). Whatever the estimators used, the resulting dis-
parity levels broadly match the diversity trends (Fig. 8), but a detailed
comparison allows us to specify the selective dynamics of main events
previously discussed (Fig. 11).

6.1. Disparification, morphological bottlenecks, and selective extinctions

The temporal differences in the rise of diversity and disparity levels
show that the first radiation of NW Tethyan belemnites was a two-
step process (Figs. 5 and 8). This is explicit when detailing the evolu-
tionary history of first Passaloteuthidae, which rapidly explored various
rostral forms (morphotype 1: robust cylindriconical shapes with apical
grooves; Fig. 11) with few species in the Sinemurian, before producing
an efficient taxonomical diversification with similar shapes during
the Early Pliensbachian (Fig. 5b). As described in numerous studies
(Foote, 1997; Hughes et al., 2013; Oyston et al., 2015), the temporal
discrepancy between morphological and taxonomical diversifications
is frequent in the early history of clades, and it can be explained
in two complementary ways: 1) ecological opportunities (and thus
morphological adaptation) are usually more important in the early
history of groups, while they gradually disappear through ecological
saturation of environments; and 2) developmental pathways are
much less canalized by genetic legacy in the early evolution of clades.
However, the low disparity of Passaloteuthidae was balanced by the
rapid diversification and disparification of Hastitidae (Fig. 5), which ini-
tiated anewkindof slender hastatemorphology (morphotype2)during
the Early Pliensbachian (Fig. 11). As previously described in other
contexts (Foote, 1997; Losos and Miles, 2002; Neige et al., 2013), this
morphological diversification could mark an adaptive radiation driven
by new ecological opportunities.

The Pliensbachian–Toarcian crisis marked the first morphological
bottleneck in the evolution of belemnites, with a preferential extinction
of outlying shapes in the morphospace (Fig. 7). In details, this was
manifested by two successive extinction events marked by distinct
morphoselective dynamics. The first one occurred during the Late
Pliensbachian, when morphotype 1 preferentially vanished compared
to morphotype 2 (Fig. 11). Then, species with hastate rostra were
further affected during the Early Toarcian event. In parallel, new belem-
nites characterized by longer andmore conical rostra (morphotype3) ap-
peared for the first time. The reasons for these dynamics remain obscure
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but, in agreement with isotopic analyses reporting coeval changes in bel-
emnite life habits (Ullmann et al., 2014), it is possible that the prominent
warming and anoxic events of the Pliensbachian–Toarcian boundary se-
lected forms adapted to different water depth ranges or environments.
When optimal conditions reappeared in the Middle and Late Toarcian,
eachmorphotype rediversified (Fig. 11), which led to the highest dispar-
ity levels of the Early Jurassic (Fig. 8). Similarly to ammonites displaying
common patterns in the Middle Toarcian (Dera et al., 2010; Neige et al.,
2013), the recovery of belemnites and their morphological exploration
could be linked to a rapid colonization of vacated ecological niches.

Like the previous one, themajor Aalenian crisis was characterized
by a significant drop in the morphological disparity of belemnite
rostra from the Late Toarcian to the Late Aalenian (Fig. 5). However, it
was non-selective (i.e., random extinction; Roy and Foote, 1997),
because taxa vanished independently of their morphology (Fig. 11).
Only few species belonging to Megateuthidae and Acrocoelitidae
(i.e., morphotype 1) survived at regional scale. These patterns contrast
with the macroevolutionary dynamics of NW Tethyan ammonites
(Neige et al., 2001), for which no morphological bottleneck was
highlighted during this interval. The random selective dynamics of the
crisis might therefore suggest a profound disturbance in the belemnite
communities (if sampling or collection biases can be ruled out), inde-
pendently of their ecological affinities.

After theAalenian crisis, the recovery of belemniteswasmarked by a
diversification of new dominant groups (e.g., Cylindroteuthidae,
Megateuthidae, and Belemnopseidae) exhibiting morphotypes similar
to previous extinct ones (Figs. 5 and 11). However, confidence intervals
remain too high for attesting a significant disparification event during
the Early Bajocian (Fig. 8). On the other hand, a significant drop in
disparity prevailed at the Bajocian–Bathonian boundary, whereas the
diversity levels from South Germany declined more gradually from
the Early Bajocian to the Middle Bathonian. As first suggested by
Villier and Korn (2004), this further indicates that disparity patterns
may be reliable markers of the very beginning of a biological crisis,
whereas regional richness patterns are sometimes less relevant.
Interestingly, this new crisis was selective against morphotypes 2 and
3 (Fig. 11). The cause of this selection remains unknown, but it is likely
that the palaeoenvironmental conditions became unsuitable for
at least some groups which went extinct (i.e., Megateuthidae with
morphotypes 3) or temporarily left the Swabian–Fraconian basins
(i.e., Cylindroteuthidae) during the Bathonian.

The last disparification of Jurassic belemnites occurred during the
Oxfordian diversification marking the evolutionary success of hastate
rostra (morphotypes 2) (Fig. 11). Although newDuvaliidae represented
the most diversified group, this episode was especially linked to a
morphological explosion of Belemnopseidae, whose disparity was
previously low. This rapid burst of new rostral shapes could imply an
adaptive radiation of this group (sensu Neige et al., 2013). However,
this major disparification was interrupted by the Kimmeridgian crisis,
which produced a last morphological bottleneck from the Late
Kimmeridgian to the Early Tithonian. As during the Early Toarcian, the
hastate shapes were further affected, and it is possible that a major
anoxic event drove this selective dynamics (Tribovillard et al., 2012).

6.2. Morphofunctional adaptations

It is tempting to attribute the great morphological variability of
belemnite rostra and the recurrent morphoselective patterns to
different ecological and/or morphofunctional constraints through
time. Recently, geochemical analyses (i.e., δ18O, δ13C, Mg/Ca) per-
formed on belemnite rostra have highlighted singular ecological dif-
ferences in term of seawater temperature or life depth according to
species (McArthur et al., 2007; Wierzbowski and Joachimski, 2007;
Dera et al., 2009; Wierzbowski and Joachimski, 2009; Mutterlose
et al., 2010; Wierzbowski and Rogov, 2011; Li et al., 2012; Harazim
et al., 2013; Stevens et al., 2014; Ullmann et al., 2014;
Wierzbowski, 2015). However, some geochemical analyses are not
without controversy (see Mutterlose et al. 2010) and might in
some cases be compounded by late ontogenetic migrations
(e.g., Alberti et al., 2012), vital effects (e.g., Harazim et al. 2013) or
diagenetic alterations (e.g., Ullmann et al. 2015). Basically, belem-
nites are supposed to have inhabited a wide range of ecological
niches ranging from shallow coastal domains (Stevens et al., 2014)
to the top of the thermocline (i.e., 50 to 250 m; Mutterlose et al.,
2010), and even migrated vertically at 600–1000 m depths
(Zakharov et al., 2006, 2011). Nonetheless, no clear bathymetric re-
lation to rostrum morphology has been proven to this date. Rare an-
atomical evidences suggest that most belemnites were active
predators and good swimmers (Reitner and Urlichs, 1983; Riegraf
and Hauff, 1983; Klug et al., 2010, 2016). Some authors hypothesized
that taxa with short and robust rostra could be nektobenthic, while
forms with laterally compressed rostra like Duvalia may have even
had a bottom-dwelling lifestyle in analogy with considerations for
extant coleoids (Packard, 1972; Mutterlose et al., 2010; Arkhipkin
et al., 2015). It is however hard to tie pelagic organisms to a particu-
lar environment or depth based on shell shape alone (Ritterbush
et al., 2014).

In analogy with recent studies on ammonoids (Tendler et al., 2015),
rostral forms can never be fully optimized for a single function because
of trade-offs between different tasks, including hydrodynamics,
economy of shell material and growth. However, swimming constraints
are often considered, perhaps prematurely, as the most relevant as
the streamlining of rostra is generally regarded as an “emergency
adaptation” favouring quick propulsive backward escapes in front of
predators (Seilacher, 1968; Seilacher and Weisenauer, 1978). As for
modern coleoids (Stevens, 1965; Johnson et al., 1972; O'Dor, 1988;
Chamberlain, 1993; Monks et al., 1996; Hewitt et al., 1999; Bartol
et al., 2001; Arkhipkin et al., 2015), the form of rostra, the position of
fins or muscles, as well as the size of phragmocones could directly
influence their maneuverability, buoyancy, drag, swimming velocity or
equilibrium constraints, each of them potentially giving advantages
in term of fitness and evolutionary success. For instance, the hydrody-
namic models of Hoener (1965) suggest that the drag coefficient
(i.e., summarizing the force opposed to motion) should decrease as
the robustness (ROB) and the apical angle (A) of rostra decrease,
while the apical inflation (INFap) increases and the apex becomes
smoother. In other words, the metabolic cost credited to rapid escape
movements, already high for modern squids (O'Dor and Webber,
1986; Wells and Clarke, 1996), might have been more expensive for
stocky conical forms than slender hastate ones. Conversely, it might be
expected that small conical rostra had further maneuverability, which
is another prerequisite to escape predators more successfully.

By following the Parento optimality concept recently applied to
ammonite shells (Tendler et al., 2015), these different hydrodynamic
properties might suggest that, combined to modifications of
phragmocones, fins, and other soft parts (Klug et al., 2016), the rostral
morphotypes could be evolutionary tradeoffs towards one or more spe-
cific tasks. The exact identification of respective tasks is beyond the goal
of this study, but it is possible that the outlying rostral forms of the
morphospace correspond to specialized taxa optimized for singular
swimming behaviours. For example, it is arguable that the Jurassic
species with slender hastate rostra (morphotype 2) were very fast
swimmers. Furthermore, it is likely that most of them inhabited deep
waters, as they massively disappeared during the bottom anoxic events
of the Early Toarcian and Kimmeridgian. To the opposite, the poor
hydrodynamic properties of conical rostra with long apical grooves
(morphotype 3) suggest that the relative species (e.g., Salpingoteuthis)
were potentially more adapted to maneuverability. This adaptation
could imply slow motions in turbulent surface waters, which are
compatible with the presence of long robust fins favouring stability.
Finally, the hydrological properties of stocky to robust cylindrical and
cylindriconical rostra (morphotype 1) remain more enigmatic, in part
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because the relative species inhabited various environments and some
of them possessed epirostra (Reitner and Urlichs, 1983; Mutterlose
et al., 2010; Ullmann et al., 2014; Arkhipkin et al., 2015). Hypothetically,
their intermediate properties in terms of maneuverability and velocity
could suggest a large spectrum of behaviours potentially implying spa-
tial or vertical migrations over long distances.

Beyond the successful ecomorphological exploration of belemnites,
it is worth mentioning that their rostra were more and more hastate
from the Middle to the Late Jurassic. Initially subangular and regular
during the Early Jurassic, the flanks of rostra also became progressively
smoother and flattened (or compressed) through time (Fig. 9). By
following the hydrodynamic models of Hoener (1965), this gradual
evolution seen in most belemnite groups could indicate a progressive
optimization of the rostrum for increased swimming velocity and
energy efficiency. In the context of the Mesozoic Marine Revolution
(Vermeij, 1977), it is possible that such pattern reflects a progressive
rise in the selective pressure exerted by marine predators (e.g., marine
reptiles, chondrichthyans) and a stronger competition forcing belem-
nites to be faster and energetically more efficient through time. This
escalation model, in which the evolution of prey (through acquisition
of defensive traits) is controlled by the coeval evolution of predators
(Vermeij, 1987, 2008), could be incidentally reflected by reciprocally
lowdiversity levels of belemnites andmarine reptiles during theMiddle
Jurassic (Bardet, 1995; Thorne et al., 2011) (Fig. 12). Further proof is still
needed to confirm this hypothesis, but if true, this means that, beyond
defensive aspects, morphological traits favouring escape strategy
could also form important components of this theory. Note that various
other factors, which might or might not also represent advantages
against increased predation and competition (e.g., those related to
economy of shell material and growth) are hard to assess due to the
limited available data for belemnites on this matter. Some authors
have argued that some belemnites might have lived longer than others
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(Dunca et al., 2006; Wierzbowski and Joachimski, 2009; Wierzbowski,
2013), while others have demonstrated complex mechanisms of
biomineralization in at least some taxa (Bandel and Spaeth, 1988;
Arkhipkin et al., 2015). More data are therefore necessary to better un-
derstand the biology of these organisms before consistent predictions
related with those factors can even be formulated.

7. Influence of palaeoenvironmental factors

7.1. Palaeoclimatic constraints

By analyzing the evolution of δ18O values from NW Tethys (Dera
et al., 2011a), it appears that seawater temperature was an important
driver of belemnite diversification during the Jurassic (Fig. 12).
Indeed, the main radiation phases coincide with warm temperate
periods such as the Early Pliensbachian, Middle–Late Toarcian, Early
Bajocian, and Middle–Late Oxfordian. Conversely, the main biotic crises
correspond either to cold episodes (i.e., Late Pliensbachian, Aalenian,
Bathonian, and Callovian–Oxfordian transition) or hyperthermal events
(i.e., Early Toarcian and Kimmeridgian) coeval with suboxic to euxinic
conditions in the Euro-Boreal basins (Tribovillard et al., 2012). However,
estimating accurately the best temperature range is not straightforward
as the palaeothermometry equations rest on seawater δ18O values
(Anderson and Arthur, 1983), which fluctuated through time in
response to changes in ice volume and freshwater supplies (Dera
et al., 2011a). By assuming seawater δ18O values between −1 and 0‰,
the most favourable temperatures would have broadly ranged from 12
to 25 °C. As observed for modern squids (Pecl and Jackson, 2008;
Hoving et al., 2013), these temperate to warm conditions might have
increased the turnover of belemnite populations because elevated tem-
peratures accelerate the metabolism, growth rate and sexual maturity
of individuals, while shortening their life spans. Consequently, it is
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possible that, in associationwith other factors, warmperiodsweremore
favourable to faster population dynamics and potentially higher diversi-
fication rates on the long term.

Most coleoids require important oxygen and food supplies to ensure
extremely fast growth rates and efficient propulsion (O'Dor and
Webber, 1986; Wells and Clarke, 1996). The pitfall of this fast life
mode is that too elevated temperatures might cause rapid and extreme
proliferations of mature specimens with faster metabolisms requiring
both more food and more oxygen (Pecl and Jackson, 2008). In addition,
warming and acidification of the surface oceanmay also create a ceiling
that might preclude cephalopods from entering more shallow waters,
while the expanding hypoxic zone will increase the depth below
which they cannot penetrate, reducing the habitable depth range of
species (Rosa and Seibel, 2008; Pörtner et al., 2011; Melzner et al.,
2013). Hence, combined effects associating size reductions of available
habitable zones, rises of physiological constraints, deteriorations of
population dynamics, and destabilizations of ecological resources
could potentially explain why the belemnites massively disappeared
during the hyperthermal and anoxic conditions of the Early Toarcian
and Kimmeridgian.

On the opposite, too cold seawater temperatures might also have
been harmful for most NW Tethyan belemnites because this implies a
considerable energetic cost for survival. This hypothesis could partly
explain the strong extinction events during the Late Pliensbachian and
Middle Jurassic cold snaps (Dera et al., 2011a; Korte et al., 2015).
Through successive generations, these adverse conditions might have
selected specimens with slower metabolisms, leading to long-lived
specimens with delayed maturity reducing the turnover of populations
(Pecl and Jackson, 2008). As observed in modern communities, this
shift in evolutionary dynamics could potentially account for the lower
diversification rates of belemnites during these cold periods. However,
further studies are necessary to confirm if predications based on trends
observed within single species or genera on annual to decadal time-
scales (Pecl and Jackson, 2008; Hoving et al., 2013), also hold up on
longer macroevolutionary time-scales.

The only ways to withstand rapid adverse climate changes were
latitudinal migrations towards refuge areas acting as diversity pools
for recovery after biotic crises. Because their diversity levels generally
counterbalanced the Euro-Boreal trends (Dzyuba, 2013; Weis et al.,
2015), we suggest that the Arctic and Mediterranean basins could
have played this role for the survival of Euro-Boreal belemnites during
hyperthermal and cold events, respectively.

7.2. Eustatic influences

In complement to palaeoclimatic changes, the sea level fluctuations
could be additional drivers of the macroevolutionary dynamics of Euro-
Boreal belemnites. Themain reason is that the shallowing/deepening of
basins modulates the potential of diversification and adaptation in
new bathymetrical niches (Dzyuba, 2013). Moreover, it is likely that
sea-level changes have directly affected the surface and access to shal-
low spawning grounds, as well as preservation potential (discussed
above). Regarding our results, this straightforward model is however
difficult to confirm for the long-term transgressions of the Early and
Late Jurassic (Hallam, 2001; Haq and Al-Qahtani, 2005; Ruban, 2015)
(Fig. 12), because repeated palaeoclimatic disturbances likely altered
the gradual process of ecological diversification. Nevertheless, the
influence of eustatic changes could have been more significant during
the major regressions of the Late Pliensbachian and Aalenian (Hallam,
2001), which coincide with transient cooling events previously
discussed (Price, 2010; Suan et al., 2010; Dera et al., 2011a; Korte
et al., 2015) (Fig. 12). Due to a lithospheric updoming in the North Sea
region, the Aalenian regression is known to have been especially impor-
tant at regional scale, as it caused extended emersions and numerous
basinal restrictions (Korte et al., 2015). This prominent sea level fall
can therefore be considered as a supplementary trigger of the Aalenian
crisis, as it considerably reduced the volume of deep and intermediate
habitats in the northern basins, and restricted the migration of
belemnites towards more suitable seawater conditions.

8. Conclusions

We analyzed the diversity and morphological disparity of Jurassic
belemnites from the Swabo-Franconian basin at a substage resolution.
By comparing our results with trends from other palaeobiogeographical
domains and palaeoenvironmental data, the following points are
highlighted:

1. After a long quiescence from the Hettangian to the Sinemurian,
the evolution of Euro-Boreal belemnites was boosted by four periods
of taxonomical diversification coupled with disparification of
rostra (i.e., Early Pliensbachian, Late Toarcian, Early Bajocian,
and Oxfordian).

2. Four diversity drops manifested by morphological bottlenecks
punctuated the evolution of Euro-Boreal belemnites during the
Pliensbachian–Toarcian interval, Aalenian, Late Bajocian, and
Kimmeridgian. Most extinction episodes were morphoselective,
except the Aalenian crisis.

3. Comparisons with Siberian data show that the Pliensbachian–
Toarcian crisis, the Middle–Late Toarcian recovery and the Aalenian
extinction remain distinguishable at supra-regional scale. The other
events can merely be considered as regional because comparative
data are lacking or opposite. We suggest that the Arctic domain
could have been a refuge area during the Toarcian and Kimmeridgian
hyperthermal events.

4. Our results highlight a strong morphological variability of rostra, in
which each morphotype represents an evolutionary trade-off
towards specific tasks combining velocity,maneuverability, buoyancy,
drag, or equilibrium constraints. The trend towards smoother and
hastate rostra could indicate increases of hydrodynamic properties
throughout the Jurassic, potentially mirroring rises in predation and
competition during the Mesozoic Marine Revolution.

5. The episodes of belemnite diversification were mainly favoured by
warm seawater temperatures potentially allowing fast metabolic
rates and rapid population turnovers. Conversely, cooling or
hyperthermal events triggered biological crises probably through
direct physiological impacts or destabilizations of ecosystems.
The major Aalenian crisis was amplified by a strong regression
in the Euro-Boreal domain.
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